
Nonlinear Word Embedding Homeomorphism

Approximation

William Bernardoni, Joshan Bajaj, and Riley Scott

December 7, 2018

Contents

1 The Problem: Semantic Topology and Embeddings 2

2 Our Solutions 2

3 Experimental Design 3

4 Linear Orthogonal Alignment 4

5 Neural Model 5

6 Elastic Map Algorithm[1] 6

7 Results 7

1

Nonlinear Homeomorphism Approximation W. Bernardoni, J. Bajaj, R. Scott

1 The Problem: Semantic Topology and Em-
beddings

Word embedding at its core is the idea that instead of representing a word as
a one-hot vector in an extremely highly dimensional one hot space (i.e. Z/2Zn

space, where n is the number of unique words, and Z are the integers) – a totally
separable space – we could represent it in a lower dimensional continuous vector
space.

The goal of word embeddings is to encode each word into a semantic space,
one that preferably would be independent of language. This lead to the idea
that the embeddings of parallel English and French corpora would be identical
up to homeomorphism.

Most research into analyzing the similarity of word embeddings assumes that
the homeomorphism between the spaces of parallel corpora would be in the form
of a linear transformation - specifically an orthogonal one. We do not believe
that this is necessarily a safe or correct assumption.

Different languages roll different semantic components into each word. For
instance, in the ancient semetic language of Akkadian, each word’s core semantic
meaning is determined by three consonant roots found within the sentence, and
each noun is heavily inflected to reflect meaning. Whereas the verb is rather
sparse – as a result of this heavy inflection each sentence contains relatively
few words each with much semantic context. In English we tend not to encode
specific semantic information into specific words and tend to have much more
verbose sentences with semantic details spread over the sentence. So we could
imagine that the inverse embedding from the semantic space to Akkadian, and
from the semantic space to English would look very different. We would expect
English to be much more stretched out with each vector in the English space
corresponding to a semantic vector that would be much closer in angle to an
axis, whereas in a heavily inflected language such as Akkadian we would expect
each Akkadian one-hot vector to correspond to semantic vectors with greater
angles from the semantic basis vectors. Each word would have more information
from different axes of the semantic space.

In this highly abstracted view of word embeddings, intuition would lead us to
believe that the images of the English embeddings and the French embeddings
of a parallel corpora as subspaces of a grand semantic space would be at best
homeomorphic, and would likely differ by a nonlinear transformation.

2 Our Solutions

The goal of this project was to develop a more accurate method of finding a
continuous transformation between two vector spaces of parallel corpora word

Page: 2

Nonlinear Homeomorphism Approximation W. Bernardoni, J. Bajaj, R. Scott

embeddings. In particular we developed a nonlinear method, derived from a
nonlinear dimensionality reduction algorithm called an Elastic Map[1].

Our Elastic Map algorithm finds a smooth manifold representation of a given
space. In its pure form it does not preserve the orientation of the space or re-
lations between specific domain and codomain points. As we want a specific
mapping wherein certain given points (e.g. the English word the) get mapped
to specific points (the corresponding French word le), we created a modified
version that converges to a specific map, rather than just a manifold over the
data.

The Elastic Map views the generated manifold as a spring which wants to
return to a minimal identity function. Then applies the training data as physi-
cal pressures on this elastic spring to deform it into the correct manifold. This
creates a smooth manifold over the training data.

The precise algorithm we use is described in a later section.

In addition to running our Elastic Map algorithm, we also ran the data
through a neural network implemented by PyTorch as a nonlinear baseline, as
well as a linear orthogonal algorithm as a linear baseline.

3 Experimental Design

We used Google’s Word2Vec to generate word embeddings on the Europarl par-
allel corpora[3]. From these corpora we then use Giza++[4] to generate the
pairings between vectors in each language. We then saved the vectors Giza++
was over 90% confident were direct translations of one another.

We implemented three functions, a orthogonal linear transformation approxi-
mation between the pairs, and two nonlinear transformations, trained and tested
on a 50-50 split the word embeddings in each language we generated a dataset
on.

Using the withheld word embeddings, we evaluated the error of each method
primarily by mean squared error. Where error is defined via the Euclidean met-
ric between the predicted word embedding and the actual word embedding.

The results, which we will cover in more detail in a later section, overwhelm-
ingly supported our hypothesis, that a nonlinear map would achieve far better
accuracy on this problem than a linear map.

Page: 3

Nonlinear Homeomorphism Approximation W. Bernardoni, J. Bajaj, R. Scott

4 Linear Orthogonal Alignment

Word Embeddings of different languages are currently mapped to each other lin-
early by finding a ”best rotation” on a dataset, i.e. a linear orthogonal matrix
such that the error between the rotated source vectors and the target vectors
is minimized. To implement our linear orthogonal map, we followed Kabschs
algorithm[2], but generalized it to the Nx100 dimension case to account the
dimensionality of the vectors created by Google Word2Vec.

The steps are broken down as follows.

Step 1) For both the training set, create a Nx100 matrix for both the
source and the target word embeddings. N represents the number of words in
the training set while 100 represents the number of dimensions. We will denote
the source matrix S, and the target matrix T .

Step 2) Once the two Nx100 matrices, S and T , are created, we translate
them such that the mean word embedding calculated from each dataset is at
the zero vector.

Step 3) With the two centered Nx100 matrices, S and T , we then calculate
the covariance matrix H.

H = ST ∗ T

Step 4) With H calculated, the next step is to find the rotation matrix R.

To do that, we compute the Single Vector Decomposition of H to find the
unitary matrix containing left-singular vectors U , the rectangular diagonal ma-
trix D, and the transpose of the unitary matrix containing right-singular vectors
V T .
i.e.

H = U ∗D ∗ V T

We then create a diagonal 100x100 matrix of 1s in each point except for the
last point, which instead contains the determinant of V ∗ UT . We will denote
this matrix Q.

Finally, we may calculate the rotation matrix R.

R = V ∗Q ∗ UT

Step 5) With R calculated, we now create a Nx100 matrix of the source
language for the test data, denoted S1, similar to the ones created in Step 1.
We then multiply this Nx100 matrix by the rotation matrix R, returning our
linearly mapped rotated matrix F .

F = S1 ∗R

Page: 4

Nonlinear Homeomorphism Approximation W. Bernardoni, J. Bajaj, R. Scott

5 Neural Model

Due to the prevalence of neural networks, we elected to use one to compare the
results gathered from our linear and elastic map models.

Similar to previous homeworks, the model was written in PyTorch for ease
of use. The model that gathered the greatest results was simply a single linear
layer with an added L2 regularization term.

Multiple other models were written and tested which included more layers,
but none performed better than the single layer network. All models ran for
100 epochs, and used the PyTorch implemented ADAM optimizer.

Mean squared loss was used to be consistent with the other methods tested,
which is also provided by PyTorch.

The error reported is the average of the losses of the last 20 epochs ran, which
is to ensure there aren’t blatant outliers from poor performance in the beginning.

The L2 regularization was only applied to the loss used to train the model,
not the mean squared error outputted.

Graphs such as the following were generated each run to illustrate the mean
squared error over time.

Page: 5

Nonlinear Homeomorphism Approximation W. Bernardoni, J. Bajaj, R. Scott

6 Elastic Map Algorithm[1]

In this section we will use d(a, b) to denote the Euclidean metric between two
points in our vector space, and ||.|| to denote the Euclidean, or l2 norm of a
vector.

∀n ∈ N we initialize n with n.o = n.i.

Each data point s ∈ S is then attached to a node n ∈ N such that the
distance between n.i and s.i is minimized. We denote this node as N(s).

Each node n ∈ N is then connected to each adjacent (in terms of the input
lattice) node, this defines a set of elastic edges E = {a, b ∈ N : d(a.i, b.i) = 1}.

We then choose K random triplets of nodes in the lattice. We denote B as
the set of these triplets. B will be the spines of the lattice.

From there we can calculate the current tension of our map via the following
three energies:

PS =
1

2

∑
s∈S
||s.o−N(s).o||2

PS is the approximation energy of our map – the pull from our dataset onto our
lattice.

PE =
1

2
λ

∑
(a,b)∈E

||a.o− b.o||2

PE is the elastic energy of our map. The elastic energy is the tendency for
nearby nodes to stay nearby. We call λ our elastic coefficient, which governs the
degree to which the map resists stretching.

PB =
1

2
µ

∑
(a,b,c)∈K

||a.o− 2(b.o) + c.o||2

PB is the bending energy of our map. The bending energy is the tendency for
our map to resist being bent and deformed. We call µ our bending coefficient.

The total tension of our map is:

P = PS + PE + PB

We choose the positions of our nodes to minimize this total tension via a
slightly modified gradient descent. We train in multiple steps, starting with a

Page: 6

Nonlinear Homeomorphism Approximation W. Bernardoni, J. Bajaj, R. Scott

high λ and µ and then decreasing those pressures over time.

At each step of our gradient descent, for all nodes in S we only incorporate
the gradient from PS , as these nodes are our ”fixed points”, and we know ex-
actly what output we want them to obtain. For all other nodes, we calculate
the gradients from PE and PB , depending on which sets they belong to.

We then use this lattice of nodes as a nonlinear map between the spaces by
interpolating between these nodes using an inverse distance weighing scheme[5]:

f(x) =

{
n.o d(x, n.i) = 0 for some n∑

n∈N w(n,x)∗n.o∑
n∈N w(n,x) otherwise

where:

w(n, x) =
1

d(x, n.i)p

and p being a hyperparameter, a higher p weighing further away nodes less. The
p used in our implementation was p = 5.

Our algorithm differs from the standard implementation of an Elastic Map,
as each node in our map has an input and an output vector associated with it.
This allows our map to be used in either direction, although as it is nonlinear
the performance in the reverse direction would not be expected to be as high as
a map trained in the reverse direction. In addition, the lattice used to determine
the energies of the map is fixed, and not optimized for, as in the standard elastic
map algorithm. Instead our lattice is derived from the fixed input positions of
each node.

As a result the training of our map is quite different (e.g. the difference in
calculating gradients for members of S versus the rest of the nodes), and our
map is not just a generic manifold onto the points, but instead is approximating
a specific map with specific defined points.

7 Results

We ran our models on five different languages – Hungarian, Estonian, Bulgar-
ian, Latvian, and Polish.

In terms of total squared error and mean squared error, our Elastic Map
implementation consistently had a third of the error of the linear orthogonal
baseline that we implemented. Even at the upper bound of one standard devia-
tion from the mean, our Elastic Map performs better than the mean performance
of the Linear Orthogonal method. Across all languages the increase in accuracy

Page: 7

Nonlinear Homeomorphism Approximation W. Bernardoni, J. Bajaj, R. Scott

Figure 1: Chart of Mean Squared Error on each language. The error bars repre-
senting one standard deviation from the mean. Note the variance on Bulgarian
in the Neural Model

is around the same proportional increase.

The only metric we measured, of Mean Squared Error, Cosine Similarity,
and Pearson’s R Coefficient, in which the Elastic Map had worse performance
than the Linear Othogonal method was the Pearson’s R Coefficient. This is to
be expected however, as since the Elastic Map method is nonlinear, we would
expect the error to similarly be nonlinear.

Compared to our highest performing neural model, we find the neural model
consistently has a mean squared error around 20% lower than our Elastic Map’s.
However there is an interesting quirk of the Neural Model, in that the major-
ity of the time it’s standard deviation is proportionally better than the Elastic
Map’s, except for around a quarter of the models. Around a quarter of the
models have standard deviations of over 100, some even higher than 400. The
model we chose for Figure 1 outlines this quirk, in that for Bulgarian the upper
bound for one standard deviation was over 300.

We believe this quirk to come from a potentially non-connected component
of the data. Neural models produce a smooth and differentiable manifold, and if
there is a ”shear” in the training space then the neural model would be forced to
create an asymptotic section on that ”shear”, whereas our Elastic Map has no
such requirements. The Elastic Map converges on a smooth map, but if there is
a non-smooth region of the space the Elastic Map has far fewer restrictions on

Page: 8

Nonlinear Homeomorphism Approximation W. Bernardoni, J. Bajaj, R. Scott

Figure 2: Chart of the Pearson’s R Coefficient on the Linear and Elastic Maps.

the manifold it creates, so it could approximate that region in a less problematic
way.

So while on average the neural model outperforms our current iteration of
our Elastic Map, our Elastic Map performs far more regularly, and consistently.
The mean error and the deviation are within a relatively tight bound across the
languages we tested over. We believe that with more tuning and a more elegant
interpolation model the Elastic Map could consistently outperform the neural
models.

You’ll note from across all methods, the data is heavily skewed, with many
outliers of high error and many vectors of low error balancing them out. This
tail of oddly behaving words is common in many NLP tasks, and we believe to
be indicative of a poor embedding into the euclidean vector space.

Our code and data can be found at: https://github.com/wrbernardoni/
mt final

The exact mean squared errors and standard deviations are noted below.

Page: 9

https://github.com/wrbernardoni/mt_final
https://github.com/wrbernardoni/mt_final

Nonlinear Homeomorphism Approximation W. Bernardoni, J. Bajaj, R. Scott

Language LO MSE Std. Dev EM MSE Std. Dev. Neural MSE Std. Dev.
Hungarian 110.209 131.553 32.650 59.782 24.014 36.223
Estonian 110.393 137.015 30.427 61.188 23.526 34.589
Bulgarian 100.324 138.849 36.577 69.555 26.280 470.018
Latvian 109.879 143.777 35.394 66.971 26.387 53.276
Polish 112.161 145.219 36.846 72.523 28.280 74.816

We only examined the cosine similarity between the Linear Orthogonal and
the Elastic Map, as those were the primary focii of this paper. They are as below:

Language LO Cos. Sim. Std. Dev. EM Cos. Sim. EM Std. Dev.
Hungarian 0.035 0.096 0.405 0.234
Estonian -0.0013 0.099 0.408 0.218
Bulgarian 0.0017 0.104 0.373 0.225
Latvian 0.0036 0.105 0.380 0.236
Polish 0.0046 0.0959 0.365 0.208

The Pearson’s R coefficients generated on the correllation between the out-
put of the map and the target vector are below:

Language LO Pearson’s EM Pearson’s
Hungarian 0.864 0.570
Estonian 0.862 0.627
Bulgarian 0.893 0.618
Latvian 0.883 0.551
Polish 0.870 0.668

References

[1] Gorban, A. N., and Zinovyev, A. Y. Elastic maps and nets for ap-
proximating principal manifolds and their application to microarray data
visualization. In Principal manifolds for data visualization and dimension
reduction. Springer, 2008, pp. 96–130.

[2] Kabsch, W. A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica Section A 32, 5, 922–923.

[3] Koehn, P. Europarl: A parallel corpus for statistical machine translation.
In MT Summit 2005.

[4] Och, F. J., and Ney, H. A systematic comparison of various statistical
alignment models. Computational Linguistics 29, 1 (2003), 19–51.

[5] Shepard, D. A two-dimensional interpolation function for irregularly-
spaced data. In Proceedings of the 1968 23rd ACM National Conference
(New York, NY, USA, 1968), ACM ’68, ACM, pp. 517–524.

Page: 10

	The Problem: Semantic Topology and Embeddings
	Our Solutions
	Experimental Design
	Linear Orthogonal Alignment
	Neural Model
	Elastic Map Algorithmelastic
	Results

