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1 Motivating Problem

Starting last summer, I competed in a tournament for a game called Recon-
naissance Blind Chess[4] hosted by the APL. This tournament was in the goal
of developing algorithms for managing uncertainty in an imperfect information
game where you were allowed to make directed observations.

The game worked like this: the set up and the piece movements and features
(i.e. castling, en-passant, ect.) were identical to chess, except with an additional
option to pass your turn, and to attempt ”illegal” moves like having a pawn at-
tack a tile where there is no piece. Any illegal move would be identical to a pass.

However you were not told your opponents move, you were only told if they
took one of your pieces and on which tile if they did. Similarly on your moves
you were told what move ended up being played, and if it took a piece, but not
which piece.

The main source of information was that at the start of each turn you could
”scan” a 3x3 square, and see all of the pieces on those tiles.

A game was won by capturing the opponent’s king. No checkmate was
needed, and they were not told if they were in check.

After the tournament the top ranked players were invited to NeurIPS, and
there we discussed how each of our bots worked. Surprisingly to me, with the
exception of one (the LeSalle bot), they were nearly identical. Each bot kept
track of all of the potential states, and looked at the moves that a regular chess
engine generated for each state. They then selected the best move based off
of a heuristic. Each bot used different heuristics, and each one had its share
of different design quirks and little features, but in essence each of them were
driven by an engine that was playing Chess, not Reconnaissance Blind Chess.
At most every bot looked at the effect of their chosen move on a single board
state, but did not consider the different sets of information that could rise out
of that move further in the game tree.

This had bothered me during my own development of my bot, as this problem
seemed insurmountable. I had policies on how to scan, and different methods
for sketching the state space and the like, but when my bot was considering a
move it was not at all considering the information gained by that move, or if
that move would be good when it has little grasp on the board state. It was
playing Chess with one eye closed and the other squinting, and not really play-
ing the right game.

I made a version of the bot that did a tree search based off of the sets of
states it could be at, but what I found is that the game tree of that imperfect
information version of Chess was exponentially larger than that of Chess – and
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as Chess is already a huge game tree, it became a completely intractable prob-
lem. To compute a single move using an Alpha-Beta search with a depth of
only 3 moves took two full days – which is not acceptable when the time limit
for a whole game was fifteen minutes.

The question that kept bothering me was this: how do we make that game
tree approachable?

How could we accelerate that tree search, and exploit any symmetries that
arise out of the set structure of the information sets?

While the approach below was developed too late for the tournament, I
believe there is worth in the question past the specific game of Reconnaissance
Blind Chess, as many different decision tasks in the real world can be modeled
as games of imperfect information.

2 Terminology and Background

When analyzing games of imperfect information we can think of our state in
terms of an ”Information Set”. How we will use the term in this paper is defined
as below:

Definition. An Information Set is a set of game states I reachable in an
imperfect information game such that:

• The player P whose action it currently is is identical between each state
x ∈ I

• When the game reaches a state within I, the player P has no knowledge
that would distinguish between element of the set I.

This definition is similar to the one found in ”Game Theory: A very short
introduction” [1]

We will be focusing in on games similar to the ones discussed before, where
it is based off of an ”underlying” perfect information game. We will call that the
Base Game and the imperfect information version of the game the Induced
Game. While it may be possible to create an imperfect information game that
does not have a base perfect information variant, the vast majority of encoun-
tered imperfect information games seem to have such a variant.

For instance in Poker, the Base Game is the game where all cards are dealt
face up, and all players are aware of each card. The Induced Game is the one
in which we are not aware of the cards. The game tree is the same between the
two games, but rather than knowing the true game state, each player instead
has a set (an Information Set) of potential hands the other players could have
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been dealt.

A key distinction with Poker is that the players have little control over the
state of the board. They are dealt hands, but have no method of choosing them.
We will be focusing on games where the state of the board is entirely controlled
by player actions, such as the ones discussed before. We will be focusing on
games with no random element. The only ”deciding factor” in the movement
along the game tree will be that of the player’s decisions. This however does not
mean that our proposed algorithm cannot be used for games with randomness
inherent in them, but modifications past the scope of this project would need
to be made.

We will also refer to a Value Function. In our model of games, each player
has such a function, and the goal of the player is to end the game in a terminal
state with a maximal value function. We will be focusing on zero-sum, two
player games, meaning that there are two participants in the game, and at the
end of the game the sum of their two value functions is zero. This means that
a player can only win if their opponent loses.

This value function can be extended to the non-terminal nodes in the game
tree recursively via ”min-max”. On each parent node of a leaf of the game tree
you look at all of the children. If the node is a state of the other player’s turn
the value of that node becomes the value of its minimally valued child, if it is a
state of your turn its value is the maximum value of its children. By repeating
this process you value the entire game tree in a way that at each node you
can guarantee that you can do no worse than the value function, even if your
opponent is playing optimally.

3 Analysis of Information Sets

We will begin with the following motivated definition (under the prior assump-
tions on our game – i.e. zero sum, non random, two player):

Definition. Let I be an information set of a player, and v : G → R the value
function for that player in the base game, where G is the set of all game states.
Then we can extend v to the induced game, and:

v(I) = min
x∈I

v(x)

Each element in successive information sets is generated by a single element
from I – meaning that if x ∈ I it doesn’t matter if there is some other element
y ∈ I to determine the successor nodes of x. Assuming optimal play on the
opponents side, they can only ever put you in your ”worst” state, and there will
always be a path to a terminal node with that state’s value. Which means that
regardless of what states are in the information set, there is a strategy that will
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guarantee you a valuation of at least v(I).

This gives rise to several useful inequalities.

Let X, Y be information sets, and X ⊆ Y , then v(X) ≥ v(Y ), as the element
which has minimal value in X is also in Y , thus the value of Y has to be less
than or equal to the value of X.

This gives rise to the following:

X ⊆ Y ⊆ Z =⇒ v(X) ≥ v(Y ) ≥ v(Z)

It’s important to note that actually computing v(I) is extremely expensive.
To do that we have to traverse almost the entire tree succeeding the set I.
There are various methods used, such as Alpha-Beta pruning, which can on
average cut down the amount of nodes that are needed to be traversed, but
the worst case cost is always that it will take exploring the entire tree – which
in the case of induced games, the tree is exponentially larger than the base game.

That is why the above inequality is extremely useful. If we don’t care about
the exact value of v(Y ) – which we often don’t, as we are usually looking for
the maximal or minimal one – then we can determine if we need to actually
compute v(Y ) before expending the large time cost to do so. All we need to do
is find the smallest superset and the largest subset and we get bounds on the
potential value of Y .

This then brings in the question, ”how often do you actually see X ⊆ Y
where X and Y are the information sets that you encounter in a tree search?”
The answer to this is highly dependent on the game, but in most imperfect
information games it happens quite a bit. There are many ways to partition a
set of potential states, and many of those will be subsets or supersets of others.

4 Difficulties

The found inequality doesn’t fully solve our problem however. As we said ear-
lier, the amount of information sets you can encounter is usually exponential
with regards to the size of the game tree, and the game trees are usually quite
large themselves. If we tried to store the value of every information set we have
evaluated then we would quickly run out of space.

In addition, these information sets can be extremely large. In Reconnais-
sance Blind Chess for instance, most players were encountering information sets
with sizes in the millions. It is quick to compute if X is a subset of Y when X
and Y are small, but when X and Y have sizes in the millions that can be an
extremely costly operation.
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We then have two problems we need to solve:
Problem 1: We need to determine which information sets occur most often,
so that we are most likely to find a subset or a superset.
Problem 2: We need a quick way to determine if X ⊆ Y when X and Y can
be extremely large.

5 Solutions

We will loosen the requirements of each problem slightly, and attack each indi-
vidually.

5.1 Most Frequent Sets

We don’t necessarily care about finding the exact most common elements, we
only really care about finding some of the more common items. Problem 1 is
just APPROX-TOP in a different form. We want to find k elements such that
the frequency of each of those elements is greater than (1 − ε)f[k] where f[k] is
the k-th highest frequency.

We will define our frequency as not just being an element that we see, but
being an element which sets a bound on another. What I mean by this is that
say in our search we encounter elements [I1, I2, I3] and we find that I1 ⊆ I3 then
we would say f(I1) = 2, f(I2) = 1, f(I3) = 1, as I1 both occurs on its own, and
as a found bound to I3.

We can apply Count Sketch[3] to our problem. Count Sketch can find all
heavy hitters in polylogarithmic space, and can solve APPROX-TOP in an ef-
ficient amount of space and time.

The reason I mention heavy hitters in particular, is that trees of the in-
duced game tend to be rather ”bushy”, and when using a directed search like
Alpha-Beta pruning you tend to have many elements that occur quite a bit, and
few elements that occur not very often, so the distribution of frequencies would
likely be heavily skewed.

5.2 Quickly Determining X ⊆ Y

We will loosen the requirement, as we don’t fully need that X ⊆ Y for v(X) ≥
v(Y ), we just need that among the elements m(X) = {x ∈ X|v(x) = v(X)},
m(X)

⋂
Y 6= ∅.

This allows us to take a powerful step back. Assuming that the probabil-
ity that a specific element is the minimal one is uniformly distributed – which
is a strong assumption, but not an unreasonable one as the partitions of sets
that form the information sets tend to be quite even so the probability that a

Page: 6



Accelerating Tree Searches William Bernardoni

specific element is in two sets tends to be quite uniform in the games which I
have encountered – we can compute a probability of that relation based off of
the intersection of two sets.

p(v(X) ≥ v(Y )) ≥ 1− |X| − |X
⋂
Y |

|X|
as:

|X| − |X
⋂
Y |

|X|
Is the probability that the minimal element of X is not in Y .

So if we can quickly determine |X
⋂
Y | we can bound our probability that

we can use a set as a bound, and if it is within an acceptable threshold then we
can use it as a bound.

It becomes useful to introduce a metric called the Jaccard index, given two
sets A,B their Jaccard index is:

J(A,B) =
|A

⋂
B|

|A
⋃
B|

As |A
⋃
B| = |A| + |B| − |A

⋂
B|, we can rewrite the above to solve for

|A
⋂
B|:

|A
⋂
B| = J(A,B)(|A|+ |B|)

1− J(A,B)

So it is sufficient to find an efficient way to find J(X,Y ) and store |X|, |Y |.
|X|, |Y | are integers so storing them takes little space, so we just need to find
an efficient way to find J(X,Y ).

Luckily, there’s an algorithm for that!

MinHash[2] allows you to estimate the Jaccard index with low error. Given
a single hash function, and two sets A,B you compute a signature for each
SA, SB where SX are the minimal k values given by computing the hash of
every element in X. To compare two sets A and B you look at SA

⋂
SB , the

size of this intersection is approximately J(A,B). This estimator has expected
error in O( 1√

k
).

This turns a problem of computing set intersections of large sets, into set
intersections of much much smaller sets.
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Even better, given the nature of the problem, we don’t even need a partic-
ularly low error. Preliminary trials suggest the application is robust to error in
this estimator.

6 Proposed Algorithm

The algorithm follows from the above two analyses. For each set we compute
a signature using MinHash, and we create a hash identifying the set itself (for
this we can just use any hash function on each individual element and a com-
mutative function to combine them).

We then have a queue of the k most seen elements (storing in the queue
just the above signature, identifier, size of the set, and the value found for that
element), where that queue is updated using the estimations given by running
Count Sketch on the identifiers of each set.

When we encounter a set X in our search, we do the following:
For each element q in the queue, we estimate the Jaccard Index J(X, q).
We then compute the two equations below (as derived earlier):

P (q is a lower bound) ≥ 1−
|q| − J(q,X)(|q|+|X|)

1−J(q,X)

|q|

P (q is an upper bound) ≥ 1−
|X| − J(q,X)(|q|+|X|)

1−J(q,X)

|X|
If we can lower bound them above a certain threshold then we can create a
bound on the set X using q. We keep track of the smallest upper bound in
value and the largest lower bound in value given by iterating across the queue,
and use those final values.

If we fully evaluate X, we update its frequency in Count Sketch, and modify
its position in the queue if necessary.

Similarly, if we use q in our queue as an upper or lower bound we also update
its frequency.

7 Analysis of the Proposed Algorithm

The space complexity of this algorithm is polylogarithmic with respect to our
error rate, as Count Sketch is.

The time complexity on each step is similarly polylogarithmic, as we just
need to run Count Sketch’s update at most three times per element that we
encounter (One for each bound, and one for it itself). Computing the similarity
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per element q is takes O( 1
ε2 ) steps where ε is our error rate for our Jaccard

Index. We do that at most k times.

While this adds complexity at each timestep of our search, with each element
we are able to bound we cut off a potentially exponential number of successor
nodes that we may not need to evaluate. The efficiency of number of steps no
longer needed due to the bounds versus the number of steps added total highly
depends on the chosen game, so a closed form solution is not possible. However
we do have some experimental results to back that there is an efficiency.

8 Experimental Results

I decided to use Reconnaissance Blind Chess as a testing platform for the algo-
rithm, as it inspired this pursuit in the first place.

Unfortunately, on both games, running a single turn at even just a search
depth of 3 turns took over two days in the baseline (without the above algorithm
applied). In addition a critical bug was found in the code just two days ago, so
I did not have time to run many trials.

What I did find however was this: when initialized in the same position
evaluating the moves for the white player on the first turn in Reconnaissance
Blind Chess with a search depth of 3:

Version Runtime (Hours)
Baseline 55.7
Accelerated 19.4

That is, we got a speedup factor of 2.87. Unfortunately due to time constraints
that was the only fixed datapoint that we were able to get.

We also care about the move valuation, it doesn’t matter if we are running
faster if we are not getting similar results.

The average distance between the outputted valuation on a given move from
the Accelerated version of the bot and the Baseline version of the bot was
less than 100 centipawns. With the engine used there was a certain amount
of stochasticity, and the same board state would be valued with a variance of
around 200 to 300 centipawns.

Not a single move’s evaluation in the completed trial ran or the several on-
going trials has differed more than 300 centipawns between the accelerated and
the baseline versions.

While I do not have any more fixed numbers in regard to speedup than that
current trial, on the two other ongoing trials in Reconnaissance Blind Chess, in
the time that it took the baseline version to evaluate 8 moves, the accelerated
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has computed more than 15, and in the time that it took the baseline to evaluate
ten moves, the accelerated has computed more than 22.

It is key to note, that the accelerated version gains performance as time goes
on. The amount it accelerates grows with each move evaluated. Preliminary
trials also suggest that the performance gain increases with the depth of the
tree increasing, however a depth of 3 is the minimal amount that we can use
the algorithm on, and so testing on a larger depth is unfortunately not in the
scope of this paper.

9 Further Areas to Explore

A similar method could likely be applied to speed up probabalistic searches like
Monte-Carlo Tree Searches. Unfortunately Alpha-Beta searches and other de-
terministic searches are only used in certain games (such as Chess), but games
that are even larger can be unapproachable with such deterministic searches.

If a similar method can be used for Monte-Carlo Tree Searches then a much
wider class of game, and much larger games can be tackled.

In addition, generalizing this to work on n-player or non-zero sum games
could also be beneficial. I suspect that in n-player games the same result would
hold, however this result does currently rely on the game being zero sum. The
inequalities would function differently in a non-zero sum game.
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